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possibilit6s s'offrent aux families sp6ciales. Ou bien, 
chaque position est monocolor6e et la famille en 
question se divise en deux ensembles 6gaux portant 
Fun la couleur C,,  l 'autre la couleur C2 [exemple: 
famille e de p2mm-p2mm (0, O, 2, O, O, 1)]. Ou bien, 
toutes les positions de la famille sp6ciale portent les 
deux couleurs C1C2 [exemple: famille h de p2mm- 
p 2 m m  (0, 0, 2, 0, 0, 1)]. Q u a n t  aux  g r o u p e s  t r i co lo r6s ,  
trois cas se pr6sentent. Dans une famille de positions 
monocolor6es, on rencontre trois ensembles 6gaux 
portant respectivement la couleur Ct,  C2 ou C3 
[exemple: famille a de p6-p6 (0, 0, 2, 1 , - 1 ,  1)]. Ou 
bien une famille de positions bicolor6es se divise en 
trois ensembles portant respectivement les deux 
couleurs C, C2, C I C  3 OH C2C 3 [exemple: famille c 
de p6-p6 (0,0,2,  1 , - 1 ,  1)]. Ou encore les 
positions de la famille sp6ciale portent toutes les trois 
couleurs C~C2C3 [exemple: famille b de p6-p6 
(0, 0, 2, l, - 1 ,  1)]. 

Nous tenons ~ la disposition du lecteur int6ress6 
les r6sul ta ts  de  l ' 6 t u d e  c o m p l e t e  du  c o l o r i a g e  des  
positions 6quivalentes g6n6rales et sp6ciales des 184 
classes de groupes quadricolor6s bidimensionneis. 
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Abstract 

Under the assumption that the structure amplitude 
of X-ray diffraction from a crystal satisfies the causal 
Fourier transform condition and appears to be a 
function with a band-limited spectrum, discrete 
Hilbert transforms (DHT) linking structure ampli- 
tudes having half-integral-valued Miller indices with 
structure amplitudes having integral-valued indices 
are obtained. DHT are then used to derive an interpo- 
lation formula that permits structure-amplitude 
reconstruction from samples with half the sampling 
frequency of the Nyquist rate. Some one-dimensional 
test calculations are also given. 

Hilbert transforms (HT), or dispersion relations, are 
well known and widely used in optics (Loudon, 1973), 
in particle scattering (Hilgevoord, 1960), in electron 
optics (Misell, Burge & Greenaway, 1974; Saxton, 
1974) and in other fields. Considerable theoretical 
work has been performed with the aim of extracting 
phase information directly from intensity data with 
the help of HT (Burge, Fiddy, Greenaway & Ross, 
1974, 1976; Taylor, 1981). There have been only a 
few attempts to apply HT to solve phases in X-ray 
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crystal structure analysis (Ramachandran,  1969; 
Kaufmann, 1985; Tang & Chang, 1990). 

Ramachandran (1969) was the first to pay attention 
to the possibility of HT application in crystallogra- 
phy. He derived equations similar to HT by differen- 
tiating a structure-amplitude expression with respect 
to the reciprocal-lattice vector. However, the presence 
of unknown derivatives in Ramachandran's  equations 
was an obstacle to their practical use. Kaufmann 
(1985) analysed the problem of extracting phase 
information from intensity measurements by means 
of HT for X-ray diffraction from crystals and pointed 
out the difficulties. Tang & Chang (1990) used HT 
for phase determination in the case of three-beam 
diffraction. 

In this communication an attempt is made to obtain 
a new expression for DHT by direct discretization of 
the integral Hilbert transforms. 

It is well known that, if a complex function of a 
real variable f(x) has a Fourier transform F(y) that 
vanishes for negative argument (causal Fourier trans- 
fo rm) , f (x )  satisfies the Hilbert transform (Toll, 1956; 
Wu & Ohmura, 1962) 

oo 

f(x)=(1/Trj)P S f ( y ) / ( y - x )d y ,  (1) 
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where P denotes the Gauchy principal value; j =  
( -1 )  ~/2. We may write an expression for a structure 
amplitude in one dimension in the form 

F(s/ a) = i p(x) exp [27rj(sx/ a)] dx 
o 

2 7 r a  

=(1/277") j" p(x')exp[j(s/a)x']dx'. (2) 
0 

From (2) one can state that the structure amplitude 
satisfies the causal Fourier transform condition and 
appears to be a function with a band-limited spectrum 
and can therefore be expressed in the form of Shan- 
non's sampling theorem (Shannon, 1949; Sayre, 1952; 
Bricogne, 1974) 

0(3 

F(s/a)= ~, F(k/2a)[sin "n'(2s-k)]/Tr(2s-k), 
k = - o o  

(3) 

which includes structure amplitudes with both 
integral and half-integral indices. It should be noted 
that one can define F(s/a) by the integral over 
(-a/2,  a/2) resulting in the sampling theorem with 
integral sampling points only (crystallographic sam- 
pling). However, in this case, F(s/a) does not satisfy 
the condition of the causal Fourier transform [p(x) 
must vanish for negative arguments] and cannot be 
used in Hilbert transforms. So, the use of twice the 
crystallographic sampling rate in this problem is con- 
nected with the applicability of Hilbert transforms to 
the structure amplitude. It is also important to recall 
that these two definitions result in different values of 
F(s/a) only if s does not assume integral values. 

It is also known (Papoulis, 1968; Kramer, 1973) 
that the Hilbert transform of the function 

f ( s )  = [sin rt(Zs-k)]/'n'(2s-k) (4) 

is 

f ( s )  = - [ 1 - c o s  7r(2s-k)]/rr(2s-k). (5) 

Substitution of (3) into (1) with (4) and (5) taken 
into account leads to 

¢c. 

F(s/a)=-(1/ j )  Y, F(k/2a) 
k =  - o o  

× [ 1 - c o s  rr(2s-k)]/rr(2s-k).  (6) 

which holds for any s and shows that the structure 
amplitudes F(k/2a) are linearly dependent. 

Now, by setting s = h/2 in (6) or (7) and dividing 
real and imaginary parts, we get the pair of DHTs 

o c  

A(h/2a)=-(1/rr) Y' B(k/2a) 
k = - cx3 

x[1- ( -1)h-k] / (h -k ) ,  (8a) 

o c  

B(h/2a)=(1/Tr) ~' A(k/2a) 
k = - - o o  

×[1 - - ( - -1 )h -k ] / (h - -k ) ,  (8b) 

where the prime on the summation signs indicates 
that the terms h = k are omitted. It is clear in (8a) 
and (8b) that if h is odd only terms with k even will 
remain and, vice versa, for h even only terms with k 
odd will remain. Thus, DHTs relate structure ampli- 
tudes with half-integral indices to structure ampli- 
tudes with integral indices and vice versa. 

It is clear that the DHTs (Sa) and (Sb) are valid 
for structure amplitudes from any arbitrary scatterer, 
i.e. for any content of the unit cell. However, if F(0) 
and the phase of one structure amplitude (fixing the 
origin) are given with a known magnitude, (8a) and 
(8b) will represent a set of linear equations with at 
least as many equations as the unknowns A(h/a), 
B(h/a), A(h/2a) and B(h/2a). Another system of 
linear equations for the same unknowns can be set 
up from (7) and can be solved for s, arbitrarily 
different from integral values. Unfortunately, the 
matrices of these problems are weakly conditioned 
and their solution along the lines of Main & Woolfson 
(1963) requires additional investigation. 

Now let us consider one more possible application 
of DHT, which could be of interest in the molecular- 
replacement method and in the analysis of non- 
crystallographic symmetry (Main & Rossmann, 1966; 
Crowther, 1969; Colman, 1974; Bricogne, 1974). The 
interpolation formula (3) includes the samples of the 
function at the integral as well as the half-integral 
sampling points. The latter can be evaluated from 
DHT. Substitution of (Sa) into (3) and simple trans- 
formations lead to 

In fact, (6) also provides a series of samples; however, 
unlike (3), the former allows one to set up linear 
equations for structure amplitudes. 

If one equates the right-hand sides of (3) and (6), 
one obtains 

O(3 

Y" F(k/2a){[sin n'(2s-k)]/Tr(2s-k) 
k = - o o  

- j [1  - cos 7r(2s-k)]/rr(2s-k)}=O, (7) 

+ 2_~j~ ~ sin r r ( 2 s - 2 p +  1) } 
rr p=_ ~ (2p _ ~ ~ - 2 - ~ - - _  ~p+  1 ) .  (9) 

Thus the interpolation formula (9) allows one to 
reconstruct the function [defined in accordance with 
(2)] from samples with half the sampling frequency 
of the associated Nyquist rate (Jerri, 1977). 

The formulae obtained can be readily extended 
to three dimensions. Thus, by starting with a 
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Table 1. Comparison of left-hand sides and right-hand 
sides of (~a) and (gb) .for a model structure 

A(s) B(s) 
s = h/2 A(s) from DHT B(s) from DHT 

0.0 60.0 59.973 0.0 0.0 
0.5 -3.993 -3.991 36.871 36.871 
1.0 4.291 4.289 -2.631 -2.631 
1.5 -I .879 -1.876 18.056 18.057 
2.0 -1.515 -1.517 -4.139 -4.139 
2.5 3.431 3.434 10.652 10.652 
3.0 -0.921 -0.924 2.070 2.070 
3.5 0.487 0.489 10.946 10.947 
4.0 -5.047 -5.050 5.426 5.426 
4.5 -8.760 -8.757 8.560 8.560 
5.0 -9.920 -9.922 -4.990 -4.991 

12.5 7.843 7.845 -7.841 -7.840 
13.0 -7.371 -7.373 -1.650 -1.651 
13.5 10.730 10.732 -16.204 -16.203 
14.0 9.057 9.055 6.356 6.355 
20.0 -0.533 -0.534 -0.733 -0.734 
20.5 -1.801 -1.799 -0.627 -0.626 
21.0 0.861 0.859 -1.900 -1.901 
21.5 0.599 0.601 0.512 0.513 
22.0 0.536 0.534 -0.063 -0.064 

Some numerical one-dimensional test calculations 
were carried out. Tables 1 and 2 show the values of 
the real and imaginary parts of the structure ampli- 
tudes calculated both directly and by use of (8) and 
(9) for the model structure with ten Gaussian atoms 
[ f ( s /a )  = 6 exp ( - - T r s 2 / 2 a 2 ) ,  period 20,~, Mo Ka 
radiation, h,,a~ = 51, atom coordinates x = 0.07, 0.14, 
0.28, 0.36, 0.48, 0.60, 0.72, 0.80, 0.88, 0.95; p in (9) 
runs from - 5 0 0  to 500]. It must be noted that if (2) 
is violated, i.e. the electron density has some spread- 
ing out of the boundaries of the unit cell, the DHT 
becomes approximate. 

The author is grateful to Professor D. Sayre for 
helpful discussions and critical remarks. 

Table 2. Test o f  (9) for  a model s t r u c t u r e  

A(s) B(s) 
s A(s) f rom (9) B(s) f rom (9) 

0.3 27.6592 27.6608 42.9579 42.9568 
1.3 10.1056 10.1072 14.0630 14.0619 
2.3 8.0863 8.0879 4.4902 4.4891 
3.3 3.9060 3.9077 6.7890 6.7879 
4.3 -4.3299 -4.3282 7.7530 7.7520 
5.3 -2.7180 -2.7164 -3.4647 -3.4657 
6.3 5.0526 5.0543 -7.6508 -7.6518 
7.3 -4.5736 -4.5719 2.4245 2.4236 
8.3 13.5335 13.5353 1.4546 1.4537 
9.3 -19.1247 -19.1231 -1.8595 -I.8603 

10.3 4.2375 4.2392 -3.0892 -3.0900 
20.3 -1.1288 -1.1271 0.1391 0.1387 
21.3 1.3511 1.3528 -0.0441 -0.0445 
22.3 0.8182 0.8199 0.7965 0.7961 
23.3 -1.3696 -1.3679 0.3688 0.3685 
24.3 -2.3640 -2.3623 -1.2338 -1.2341 
25.3 1.4642 1.4658 2.3129 2.3126 
26.3 0.5826 0.5842 -0.7664 -0.7666 
27.3 0.9928 0.9944 -1.1980 -1.1982 
28.3 0.9265 0.9281 -0.4690 -0.4691 

three-dimensional sampling theorem (Petersen & 
Middleton, 1962) and applying transform (1) to each 
variable, one can obtain a three-dimensional form 
of (6), 

F Sl = _  E E E .  k, 
' a 2 '  k! k 2 k 3 I ' 2a2' 

-oo 

× 12i [ 1 - c o s  7r(2si-ki)] 
i=1 ¢ r (2s i -k i )  
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